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The effects of a two-dimensional, cylindrically symmetric periodic structure on the radiation from a source lo-
cated inside the structure are considered. The coupling of the source radiation to the cylindrical cavity is ana-
lyzed classically by consideration of the interaction of a current line source with its own radiated field
supported by the cavity. The analysis predicts variations in the radiative damping rate (inverse lifetime) and
associated shifts in the oscillation frequency of the source. It is found that significant enhancement and inhi-
bition of the radiation are possible even when the source is not at the center of the structure. Frequency shifts
induced by the cavity are found to be negligible relative to the size of the band gap of the Bragg structure. The
class of periodic structures analyzed has potential application to planar waveguide devices, such as concentric-
circle gratings, surface-emitting lasers, and cylindrically symmetric lasers and amplifiers.

1. INTRODUCTION the radial direction in a cylindrically symmetric, periodic
structure.

It is well understood that the radiative decay of excited Cylindrically symmetric, periodic structures have al-
atoms through spontaneous emission can depend strongly ready received considerable attention because of their
on the electromagnetic modes associated with the atoms' potential to form circularly symmetric, surface-emitting
surrounding environment.' The spontaneous emission semiconductor laser resonators.'" 2  These lasers employ
might be either enhanced or inhibited, depending on the a radial surface corrugation on a planar waveguide. An
characteristics of the atom and the cavity. Many in- example of a typical structure fabricated for use in a
vestigations of this phenomenon have been concerned circular-grating laser is shown in Fig. 1. These gratings
with the effects of metal and dielectric interfaces, and were defined by electron-beam lithog aphy and were sub-
metallic waveguides near cutoff, on atomic radiation.2 3  A sequently etched into the AIGaAs laser material by chemi-
beautiful series of experiments by Drexhage4 and others cally assisted (chlorine) ion-beam etching."3  Recently the
examined the dependence of the fluorescent lifetime of first observation of true circular-mode lasing in one of
excited molecules on the separation from gold, silver, and these lasers was reported. 4  For this case, in which lasing
copper interfaces. While they are fundamentally highly occurs along the radial direction, it is most desirable to
significant, metallic structures are less important in prac- enhance spontaneous emission, since it has been shown
tice because of their inherently lossy nature. As a result that one can decrease the threshold of a laser substan- 0
periodic dielectric structures have received considerable tially by increasing the coupling efficiency of spontaneous
attention recently. Most investigations of these struc- emission into a lasing mode.'
tures have been concerned with one-dimensional and Because of the fundamentally unique nature of the
three-dimensional rectangular periodicities-the one- cylindrically symmetric periodicity and the opportunity Z
dimensional case has direct applications to vertical-cavity for insight into practical applications such as the circular-
surface-emitting semiconductor lasers;5','7 the three- grating laser, it is interesting to consider the cavity ef- t

dimensional structure offers the possibility of a total fects of such a structure on the radiation of an enclosed
photonic band gap, in which electromagnetic wave propa- source. At first thought it would seem that the source
gation is isotropically forbidden within an energy gap of would have to be placed at the center of the structure in
nonzero width.' Two-dimensional (2D) periodic struc- order for it to see the periodicity and strongly couple to -

tures have also received recent interest."' In addition to the cavity or to exhibit significant enhancement or inhibi-
their fundamental interest, these structures may have ap- tion of radiation. However, for a cylindrical periodic
plications in planar waveguides and in lasers and amplifi- structure of infinite radial extent, any point at a finite o]
ers that operate along the nonperiodic axis (since radius appears to be at the center when viewed from infin-
spontaneous emission is inhibited in the periodic plane). ity: the radiation from a source placed at a nonzero but 0
For model systems of dimensions higher than one, previ- finite radial position can be described by a finite number .............
ous research focused on calculating the energy gaps for of azimuthal waves, all of which approach circular waves
various types of translationally invariant systems. Of as they radiate out to infinity. Therefore a cylindrical
equal interest, however, is the problem of an elementary periodic structure of large but finite radial extent ought to
source placed within a Bragg-reflecting structure, a com- couple strongly to radiation emitted from a region of
plex problem for practical systems. In this paper we con- nonzero extent around the center. It is our intent to
sider the possibility of altering radiative properties in two show that this region does exist and can extend over a
dimensions by using only a 1D periodicity, that is, along distance of many wavelengths, indicating that practical

0740-3224/93/020391-08$05.00 C~ 1993 Optical Society of America -
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tion. Thus, while the theory in this paper is not capable
of quantitatively predicting radiative effects in devices
like that shown in Fig. 1, it is likely that the qualitative
features emerging from the model will offer insight into
the behavior of such devices. This is particularly true for
cylindrical structures that include a planar optical wave-
guide, as a result of the significant coupling between the

• ••I radially propagating bound modes and a source located on
or within the waveguide.'5 In this context the theory in
this paper can be viewed as a first step toward under-
standing the radiative properties of practical structures,
such as those involving concentric-circle gratings, by ex-
amining a simpler system for which essentially exact re-
sults can be obtained.

The effect of a cavity on the enhancement or the inhibi-
tion of spontaneous emission can be theoretically modeled
in many ways. A simple and intuitive model treats the
source as a classical dipole oscillator that is driven by the
reflection of its own radiated field from the cavity. This
method was employed by Kuhn to describe the effect of a
metallic mirror on the radiation from a nearby excited
molecule."6 It was later used quite successfully by
Chance et al.17 to model quantitatively the experimental

,
4 ':'• data of Drexhage. We adapt this classical method to ana-

lyze the effects of the cylindrical periodic structure on the
radiation of an enclosed source for several reasons. First,
the method allows us directly to analyze radiative effects
as a function of source position in the cavity and hence to
address questions regarding the size of the central region
for which significant effects can occur. Second, it is not
clear how a band-theory description of electromagnetic
wave propagation can be applied to the cylindrical case, as

*.. • is often done in the case of the rectangular periodicity.
'-.-. '•~ In particular, many concepts in band theory, such as re-

W ciprocal space and the Brillouin zone, rely on the transla-
•- •-- .tional invariance inherent in rectangular periodic systems.

In the cylindrical system, if one moves an integer number
of periods along the radius, the surrounding structure
changes, and hence the system is not translationally
invariant.

The organization of this paper is as follows. ILt
Section 2 we develop the theoretical formulation for calcu-
lation of the enhancement and inhibition of cylindrical-
wave radiation from a current line source in terms of the
radiative damping rate (inverse lifetime) and the associ-

Fig. 1. Scanning electron micrographs of a typical grating reso- ated frequency shifts. The formulation uses cylindrical
nator for a concentric-circle grating, surface-emitting semicon- coupled-wave theory to calculate the reflection of the
ductor laser. radiated field back onto the source.'"' In Section 3 the

theory is used to calculate numerically radiation enhance-
applications involving the cylindrical periodic structure ment and inhibition and frequency shifts for representa-
are feasible. tive structures. Finally, in Section 4 conclusions are

Because the unique radiative effects associated with drawn from the results of this investigation.
cylindrically symmetric, periodic structures are a direct
result of the 2D circular nature of these structures, we 2. THEORETICAL FORMULATION
examine a strictly 2D system in this paper; i.e., we assume
a current line source that emits strictly cylindrical waves, In this analysis we treat the source of radiation as a classi-
so that both source and cavity are translationally invari- cal current line source. We model the effects of the cylin-
ant along the cylinder axis. This simplification ignores drical periodic structure on the source, following Kuhn's
radiation that propagates along the cylinder axis. For a method. 6 In Subsection 2.A we describe the equation of
practical, realizable structure with cylindrical symmetry, motion of the current line source, and from that equation
accurate predictions of the magnitudes of the radiative ef- we derive the changes in radiative damping rate (inverse
fects should take into account the existence of radiative lifetime) and frequency from the free-space quantities
channels associated with propagation in the axial direc- that are due to the source's own field reflected from the
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cavity. In order to calculate the reflected field, we must quantity F is an effective reflection coefficient that de-
first calculate the field emitted by the source; this field is pends on the source position and the characteristics of
derived in Subsection 2.B. In Subsection 2.C we derive the cylindrical periodic structure. In Subsection 2.C we
the reflected field at the source position by using cylindri- show how this quantity can be computed with coupled-
cal coupled-wave theory. Finally, in Subsection 2.D, com- wave theory.
plete expressions for the radiative damping rate and the
frequency shift are derived. B. Source Field

Reducing the problem to one of strictly 2D character, we
A. Source Equation of Motion take the source to be a current line source oriented along
In Kuhn's analysis the source is assumed to be a harmoni- the cylinder axis of the cylindrical periodic structure.
cally bound charge that represents a point dipole. In the The geometry of the problem is shown in Fig. 2. The
present 2D analysis the reduction in the order of the prob- source is described by the current density
lem dimensionality must be accompanied by a redefinition J(r,46) = -iw0Po5(r - ro)
of characteristic source parameters in terms of a unit
length. We assume that the current line source behaves = -iwoPo(1/r)8(r - ro)8(4h - 40)i, (7)
as an ensemble of harmonically bound charge elements,
described by the charge per unit length, q, such that this where ro = (r0,¢ 0) is the location of the source and 8(r) is
ensemble obeys the equation of motion the 2D Dirac delta function.

Because of the simple geometry of the source and the
+ O1o2p = (q 2/m)ER - bop, (1) periodic structure, we need to consider only a single vec-

tor component of the electric field, E = iE,(r, h), which iswhere p is the total dipole moment per unit length, £00 15 a solution to the wave equation

the free-space oscillation frequency in the absence of all

damping, m is the effective mass per unit length, ER is the V X V X E(r,o) - A•oew0 2E(r,0) = iMocOoJ(r,vk), (8)
reflected field at the source position, and b0 is the damp- where an exp(-iwot) harmonic time dependence is as-
ing constant (inverse lifetime) in the absence of the cavity. sumed and c is the constant permittivity in the source re-
The dipole moment per unit length, p, and the reflected gion (r < rl). From the fact that the electric field has
field, ER, oscillate at the same (complex) frequency: only a 2 component, Eq. (8) is simplified to a 2D Helmholtz

p = po exp[-(iw + b/2)tl, (2a) equation with a point-source driving term:

ER - Eo exp[-(ie, + b/2)t], (2b) (V2 + ko2)E,(r,0) = -_t1Aw 2poS(r - ro), (9)

where o and b are the frequency and the damping rate in where ko =_ (.o•e) 1 '2wo. The solution to such an equation
the presence of the cavity, respectively. The problem is is well known to be

then one of a driven harmonic oscillator, where the exter- E(r, = EsH"(koir - rol), (10)
nal force is proportional to the reflected radiation field of
the line source. where

Using the forms given by Eqs. (2) in Eq. (1) and equating
real and imaginary parts independently, we arrive at the E, = 4i°-2 (11)
expressions

b q2 and Ho" is a Hankel function of the first kind, order zero.
- = 1 + - Im(Eo), (3)
bo mwpobo

2 2 b2  bbo _ q2o2-co•0  Re(Eo).(4
4 2 mpo (4)

Equation (3) gives the normalized (to the free-space value)
radiative damping rate. Equation (4), which gives the fre-
quency shift caused by the presence of the cavity, can be nAýr 0
simplified by recognizing that Aw << o, wo0, where Aw - P
(o - wo. Using this assumption, which will be justified P
below, we can write Eq. (4) as

_ b2  bbo q 2  (5)

8 -o 4 -o 2 mwopo0

In order to calculate the radiative damping rate and fre-
quency shift determined by Eqs. (3) and (5), respectively, r
we need to know the reflected field strength at the source, 0 r r
E0. It is convcr',nt to factor this quantity, such that 0 r0 ri r2

Eo = Esr. (6) L
Fig. 2. lllustration of the geometry of the current line source

The quantity Es, which denotes the source field strength, and the cylindrical periodic structure. Both source and struc-
will be calculated in Subsection 2.B of this section. The ture extend uniformly to z ±
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Although Eq. (10) accurately describes the field emitted field, application to Eq. (16) requires that
by the line source, it is not the most convenient form. By a,, b,... (17)
expanding the 4) dependence of the field in a Fourier se-ries, one can express the source field as The other boundary condition is applied at the inner radiusof the cylindrical Bragg structure, r = r,. It requires

E.`)r, 4)) E, explin(n4 - (0))l that the sum of all inward-going waves of order m be equal
to the sum of all outward-going waves of order rn multi-

rJ,,,,r)H,')k~r1) r < plied by the amplitude reflection coefficient, p_. of the

, , , (12) Bragg structure for a wave of order in:
b H,;~(krorl = p,[,a., Hm(korI) + E.•C,,,H2 ,(kr 1 1.

where J., is a Bessel function of order rn. For r > r,,, the ( 18)
source field can be compactly written as

The reflection coefficient p,, is calculated by using

Ef(r,4)) = E.j GHC,!H(k(r)exp(im4) r > r, (13) scalar, cylindrical coupled-wave theory."• This develop-
-.... ment uses a field expansion of the form of Eq. (16), where

with the outward- and inward-going wave amplitudes become
functions of the radial coordinate to allow for the coupling

C,,- exp(-im0,)J,,,k or 0). (14) induced by the periodic structure in the region r, <

Equations (13) and (14) clearly demonstrate the nature of r < r 2. The coupled-wave equations for these outward-

the source field emitted by the line source. For r > ro, and 'nward-going field amplitudes in the structure, A,, (r)

the field is composed of a sum of individual, outward- and B.,(r), respectively, are given by

going azimuthal waves of order mn, whose strengths are dA& : Trkor ,
given by the amplitudes C,._ Even though the sum is infi- dr 2
nite, for a finite source position ro the amplitudes C, are x [Aý(r)H,,(kor) + B,,(r)H;'"(k,•rj , (19a)
appreciable only for a finite number of waves; therefore
the infinite sum can be approximated well by a finite dB,, . irkor _ .
number of terms. Note that the source field is composed dr 2
of standing waves for r < ro and hence is well behaved at
the origin for a finite, but nonzero, source position.

These equations are solved numerically in the periodic re-
C. Reflected Field gion with the boundary conditions A. (r,) = 1 and B,,, r,) =
In this subsection we calculate the effective reflection co- 0, since no inward-going waves are incident upon the
efficient I defined in Subsection 2.A. The basic idea is to structure from infinity. In these equations
express the source field as a sum of individual azimuthal 27r

wave components (as in Subsection 2.B), to calculate the K(r) = 2
K cos -.- r - (20)

strengths of those components at the inner radius of
the cylindrical periodic structure (r = rl). to compute the where A is the period of the Bragg structure, fl is the
Bragg reflection of each azimuthal component separately phase of the periodicity with respect to the center, and the
by using cylindrical coupled-wave theory, and then to sum coupling constant K is given by
the reflected components back at the source to obtain the ko
total reflected field. 4WA(n,1) (21)

In the source region, defined such that r < rl, the total
electric field E.' can be expressed as the sum of the source In this expression n is the bulk index of refraction of the

field E,' and a reflected field ER, consisting of outward- source region (r < r,) and AWn') is the index modulation in

and inward-going cylindrical waves generated by reflec- the periodic region (r, < r < r2 ). The reflection coeffi-

tions off the cylindrical Bragg structure: cient is then given by
E TRB. (r,) ( 2

El= Els + EZ, (15) A. A(rl) (22)

with Es given by Eq. (12) and Equations (17) and (18) can be solved simultaneously to

yield the constant amplitudes a. and b,.. These can then
ER = [a,.H.T(kor) + bH."(kor)Iexp(im0), (16) be inserted into Eq. (16), giving the reflected field every-

where in the source region. Evaluating this expression at
where a, and b. are (constant) outward- and inward-going the source position and recognizing that E0 = ER(ro, 4)o)
wave amplitudes. The amplitudes a, and b. can be de- FEs, we obtain
termined from the boundary conditions on the source re-
gion. At the center, r = 0, the sum of all outward-going r -_ 2p_ H__(kor_)_... .
waves of order m must be equal to the sum of all inward- F = 2. kr- - .H-(kr) ,(kor 0 )12  (23)

going waves of order m. This intuitive boundary condi- 12

tion, indicating perfect reflection at the center, is for the effective reflection coefficient of the radiated field
mathematically necessary to prevent the total field from at the source position. For a given r0 , the Bessel function
diverging at the center owing to the singular nature of J,. will eventually tend to zero for large enough m, so that
cylindrical Neumann functions." Since this boundary the infinite sum in Eq. (23) can be well approximated by a
condition is already built into the source term of the total finite sum.
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D. Radiative Damping Rate and Frequency Shift bo = 0.9 X 10' Hz and wo = 0.4 X 10"' Hz. Therefore
From Eq. (3) it is apparent that, to calculate the actual bo << wo, and relation (27) is well approximated by
damping rate b, we need to know the free-space damping
rate b0 for the current line source. Because the line Aw - (b0/2)Im(F). (28)
source in free space is radiating energy, its oscillation
must be damped. One can calculate the rate of damping Thus, for most of the range of F Aw - bo, indicating that
approximately by using a classical radiation reaction argu- Aw << wo, as we have assumed above. The possibility of
ment.20 Starting with the electric field given in Eq. (10), large frequency shifts is addressed more carefully in
the far-field Poynting vector for the line source in free Section 3 when we consider numerical results.
space can be calculated and then integrated over the azi-
muthal angle to yield the power per unit length emitted by 3. NUMERICAL RESULTS AND DISCUSSION
the source:

2 1In this section the capability of a cylindrical Bragg struc-
P = Esj2. (24) ture to enhance or to inhibit source radiation is investi-

/.100 gated numerically for some representative cases. We are

By application of the usual radiation-reaction argument, concerned mostly with the radiative damping rate, b, as a

which is predicated on balancing the rate of energy lost to function of various parameters, such as source position

radiation with the rate of work done on the source by a and the modulation, the placement, and the size of the

reaction force, an approximate damping term is incorpo- Bragg structure. Most of the cases considered below

rated into the source equation of motion. This develop- involve structures with only 10 Bragg periods, which is

ment yields an explicit expression for the free-space perhaps the lower limit that one might employ in any prac-

damping rate: tical structure, since significant reflectivity from a 10-
period grating requires large modulation, or coupling con-

b= q 2W (25) stant K. While this small number of periods was chosen4com c 2  mostly for convenience and for best illustration of the ra-

diative effects, it is important to note that there is nothing
It is important to note that this damping rate is directly in the theoretical formulation that limits the amount of
proportional to the frequency so0, whereas the damping modulation for which the theory is accurate. Even
rate for a point dipole in free space is proportional to the though we employ coupled-wave theory, the theory is not
square of the frequency. This difference is representative perturbative (as in the case of an actual waveguide grat-
of a fundamental scaling because of the reduced dimen- ing), and we have made no slowly varying envelope ap-
sionality of the problem. proximation. Also, most of the cases below place the

Substituting Eqs. (25), (11), and (6) into Eq. (3), we ar- beginning of the Bragg structure at least 10 periods from
rive at the simple expression for the radiative damping the center. This choice allows us to examine a reasonably
rate in the presence of the cavitly large range of source positions, since the developed theory

b/bo = 1 + Re(F), (26) inherently requires the source to be inside the inner ra-
dius of the Bragg region (ro < r,). However, a more gen-

where the approximation w - wo is used. Because Re(F) eral treatment could be extended to include the possibility
spans the range (-1, x), the normalized damping rate b/bo of source placement within the Bragg region.
will span the physically meaningful range (0, -). Equa- We first examine the dependence of the radiative damp-
tion (26) is the expression that we use in Section 3 to ing rate on the phase of the cosinusoidal periodicity. We
calculate radiative damping rates numerically. This ex- assume that the source is exactly tuned to the Bragg fre-
pression clearly shows that the damping rate is propor- quency, or won = WB, where ) B -rc/A. The phase 0l is
tional to reflected field strength. Therefore, when defined by Eq. (20) and is shown schematically in Fig. 2.
b/bo -- 0, or when there is a field node at the source posi- This dependence is plotted in Fig. 3 for the source posi-
tion, the radiative lifetime becomes large, indicating inhi- tioned exactly at the center (ro = 0). The Bragg region
bition of the radiation. As b/bo - -, or when there is an extends 10 periods along the radial direction and consists
antinode, the radiative lifetime becomes small, indicating of three different modulation strengths, denoted by the
enhancement. coupling-constant-grating-length products KL of 1, 2, and

The frequency shift can be calculated from Eq. (5) by 4. Over most of the full range of the grating phase 0l the
the use of Eqs. (26), (25), (11), and (6), yielding source experiences inhibited radiation, since b/bo < 1; the

bo2  b0  stronger the modulation, the greater the degree of inhibi-
w•o-- [Re(F)' - 1} + 2 Im(r). (27) tion. Near fl = ir/2, or for a sinusoidal grating, the

source experiences strongly enhanced emission. Note
Note that the classical frequency shift exactly agrees with that the enhancement resonance becomes significantly
the quantum-mechanically calculated level shift for the sharper for stronger modulations. Also shown in Fig. 3 is
first excited state when the source is described as a har- the case of a 100-period Bragg region with modulation
monic oscillator.2" For a more realistic model of an strength KL = 2. The behavior is similar to that of the
atomic source, one needs a thorough quantum-mechanical 10-period case except for a slight shift in the enhancement
calculation to predict the level shift accurately. To resonance.
examine the magnitude of the frequency shift, consider In Fig. 4 we examine the dependence of radiative damp-
a harmonically oscillating line source emitting at a ing rate on the source position. To examine the size of
free-space wavelength of A0 = 0.5 Mm. In this case the source region over which significant enhancement can
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Fig. 3. Normalized radiative damping rate versus grating phase (a)
for a full range of phases (0 -- 27) and source placement at the
center.

occur, we fix Jiv grating phase at the peak of the enhance- -

ment resonance in Fig. 3 (for ro = 0). This phase is "L = 1
denoted fl = 11.,, where t,.... is a function of the modu- 0
lation strength KL. Figure 4(a) shows the radiative
damping rate for all possible source positions inside the 0
inner radius of the Bragg structure (ro < rl). It is appar- z L
ent that, no matter where the source is placed, the source 0.01
experiences significant enhancement for this particular
choice of grating phase. The largest enhancement occurs _

at the center, since the source emits a perfectly cylindri- K L = 4 r10A; 0 -a-

cally symmetric field from that position, and then the en- 0I.001 L0^
hancement decreases as the source is moved away from L 1
the center. Although the strong modulation case (KL = ......... ... ..
4) experiences the greatest degree of enhancement, the 0 2 4 6 8 10
enhancement oscillates dramatically with source position SOURCE POSITION (ro /A)
because of the sharpness of its resonance. (b)

In Figs. 4(b) and 4(c) we examine the size of the source
region over which significant inhibition can occur. In
Fig. 4(b) we fix the grating phase at the point of minimum I
radiative damping (maximum inhibition) in Fig. 3. This •....
phase is denoted 0 = fl,,. The radiative damping rate KL I -1
is plotted for all possible source positions inside the inner
radius of the Bragg structure. The plot shows that the H 0.1

positions. In fact there is a region with a radius of ap- L =2

proximately two full grating periods for which the source a.
experiences essentially the same inhibition as it does 0.01

when placed exactly at the center. As in Fig. 4(a), W
stronger modulation produces a greater degree of inhibi- H
tion and greater oscillation of inhibitien with source posi- 10 0.01.

0i 0.001 i
tion. This oscillation is not absolutely necessary, though. -L 4 L = 100

In Fig. 4(c) we fix the grating phase at f) = 31r/2, which is
near the maximum inhibition phase but not exactly equal 06
to it, and we perform the same calculation as that in 6 10
Fig. 4(b). We find that the degree of inhibition is in gen- SOURCE POSITION (ro/A)

eral greater over the range of source positions than that (c)
for 11 = f,,,, and, more important, the inhibition does Fig. 4. Normalized radiative damping rate versus source posi-
not oscillate nearly as much with source position. tion for various index modulation strengths: (a) grating phase A

sthe case of a 100-period Bragg chosen to give maximum damping rate (maximized enhance-
Also shown in Fig. 4 is tment) in Fig. 3, (b) grating phase H) chosen to give minimum

region for PcL = 2 (dashed curves). The behavior is simi- damping rate (maximized inhibition) in Fig. 3, (c) grating phase
lar to that of the 10-period case except that the enhance- 0 - 31r/2.
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S.whose reflectivity properties are strongly dependent on
frequency, is whether it is possible for the cavity to shift
the frequency of the line source enough to push it outside
the band gap of the cavity. If such a shift were possible,

,,, "',then the above numerical analysis, which assumes that the
< ,source is always tuned to the Bragg frequency, would be

incorrect. The correct analysis, accounting explicitly for
the interdependence of the lifetime and frequency varia-

S0.1 , tions, would be more complicated. Fortunately, as we
o ,show below, it is an excellent approximation to assume
> that the cavity-induced frequency shift is negligible as far

, U 1 5nr L 10 A, cL=2 as Bragg-reflectivity effects are concerned.
..... , r, 10A We first consider the question of how rapidly Bragg re-"cc2 fleet iv ity effects vary with frequency detu ning. Thus far

in the analysis we have assumed that the source is exactly

0.01 . 1
0 2 4 6 8 10 tuned to the Bragg frequency, or w~n = wB. This choice

SOURCE POSITION (r0 / A1  
is made in the calculation of the field reflection coeffi-

Fig. 5. Normalized radiative damping rate versus source posi- cient from the Bragg structure with the coupled-wave

tion for various inner radii of a 10-period Bragg region. equations (19). In Fig. 6 we plot the radiative damping

ment and the inhibition remain large for a greater range 100i r=0; r1 =10A; U=, ; L=10A

of source positions than in the 10-period case. The rea-
son for this slight difference can be explained as follows.
The field emitted from a given source position can be well
described by a finite number of azimuthal waves, as im- • 10

plied in Eqs. (13) and (14). Over the 10-period Bragg re- cr
gion the highest-order waves are still somewhat not zo
cylindrically symmetric and hence are not strongly re- - 1
flected by the structure. However, because the 100-
period Bragg region covers a much larger radial extent,
the highest-order waves can propagate further out radially
and more closely approach cylindrically symmetric waves. 0.1

Hence these waves are more strongly reflected in the 100-
period case, even though the coupling-constant-grating-
length product KL is the same in both cases. 0.01 , I I ..

This phenomenon is even more apparent in Fig. 5, where -10000 -5000 0 5000 10000

the inner radius of the Bragg structure (r1 ) is varied for a DETUNING (6) 6),)/c (cm-')
fixed grating length. In Fig. 5 the radiative damping rate Fig. 6. Normalized radiative damping rate versus detuning of
is plotted as a function of source position for three differ- the source frequency from the Bragg frequency defined by the

ent inner radii of a 10-period Bragg structure. In this Bragg structure. The line source is placed at the center, and the

plot the giating phase is chosen to give maximum inhibi- grating phase is chosen to give inhibition at the Bragg frequency.

tion (Q = 37r/2). The farther from the center the Bragg
structure is placed, the larger the radial extent of the re-
gion over which the source experiences maximum inhibi- 0:
tion. Moving the inner radius of the Bragg structure
from 10 to 40 periods from the center almost doubles the 0.02
radius of the maximum inhibition region from 2 to 4 grat-
ing periods. The reason for this behavior was explained
above: the farther from the center the Bragg reflection
is occurring, the more of a chance the source waves have 0.00 -
to approach their asymptotic, cylindrically symmetric t'

form. Hence, for either enhancement or inhibition of the co
source radiation, it is desirable to push Bragg reflections ic '
as far from the center as possible, either by extending the w -0.02 L

inner radius of a strongly modulated, short grating or by 0Ml K DL= 2
using a more weakly modulated, long grating. In a prac-

LJL
tical structure the maximum radial extent of the Bragg
cavity would be limited by propagation loss, which we do 0.0 0.5 1.0 1.5 2.0
not consider here. GRATING PHASE (Q /1)

In Figs. 6 and 7 we turn to the issue of frequency shifts Fig. 7. Cavity-induced frequency shift of the line source versus
caused by the presence of the cylindrical Bragg cavity. A grating phase for a full range of phases (0 -' 2w) and source
natural question to consider when using a Bragg cavity, placement at the center.
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rate as a function of frequency detuning from the Bragg pushing the Bragg reflection from the periodic structure
frequency. We assume a Bragg structure designed for a out to larger radial extents. This pushing can be accom-
source emitting at Ao/n ý 0.5 Am, so that A = 0.25 Am, plished either by an increase in the inner radius of the
and ws is fixed; we vary the source frequency w = won. beginning of the periodicity or by use of a long (radially)
The source is placed at the center (ro = 0), and the grat- grating with weak modulation, so that the reflection is
ing phase il is chosen to give maximum inhibition at the spread out radially. The maximum radial extent of the
Bragg frequency. The plot shows expected oscillations Bragg cavity in a practical structure ought to be limited
in the damping rate, with the maximum inhibition occur- only by propagation losses.
ring at the Bragg frequency. Note that the cavity reso- Finally, an analysis of the harmonically oscillating cur-
nances that produce local maxima in inhibition are more rent line source frequency shifts that are caused by the
closely spaced for the case of weaker modulation (KL = 1), presence of the cyll-drical Bragg cavity finds the shifts to
since the radial extent of the cavity is effectively larger. be small. By comparing these shifts in the variation of
It is important to note the frequency scale in this plot: Bragg reflectivity of the cavity with frequency, we find
the radiative damping rate does not change significantly that the source remains exactly tuned to the Bragg fre-
over a >1000-cm-' range of frequencies around the Bragg quency to a good approximation, even in cases of strong
frequency. enhancement or inhibition of radiation.

In Fig. 7 we examine typical frequency shifts that are
induced by the presence of the cavity. The plot is similar ACKNOWLEDGMENTS
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